Merton’s model (1974) of default risk

Market Value of Assets

Assets standard deviation (%)

Face Value of the Debt ($millions)

Risk-free rate

Time horizon is 1 year



\( \large{ T=1 } \)


PUT option on the Assets Value + Loan = Risk-free bond. Then under no arbitrage condition:

$$ \large{ P_0 + B_0 = F e^{-r_fT} } $$

The PUT option price:

$$ \large{ P_0 = F e^{-r_fT} N(-d_2) - V_0 N(-d_1) } $$
$$ \kern 9pc \large{ d_1 = {ln(V_0 / F) + (r_f + {1 \over 2} \sigma_{V}) \over \sigma_{V} \sqrt{T}}, \kern 2pc d_2 = d_1 - \sigma_{V} \sqrt{T} } $$

The loan value:


Equilibrium interest rate on the Loan, \( r^* \):


Credit spread:

Probability of Default (using normal distribution of assets value assumption):